
The 5 Key Steps to Building a

Modern Enterprise Application:
No-Code vs. Low-Code
When it comes to enterprise development, the advantages of “no” over “low”
are impossible to ignore.

TL;D
R

• “Low-code” and “no-code” sound similar, but
are not the same

• Low-code helps engineers automate
repeatable coding tasks; no-code eliminates
the need to code

• No-code provides benefits at each part of the
development process

2The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

Contents
Introduction

The 5 Key Steps

Step 1: Capture User Data via a Multi-Step Form

Step 2: Define Business Logic

Step 3: Integrate With Third-Party Services and Data Sources

Step 4: Query & Process Data From Integrations

Step 5: Create APIs to Allow Systems to “Talk” to Your Application

Unqork: The World’s First Enterprise No-Code Application Platform

3

5

8

10

13

15

17

18

3The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

According to Gartner, 65% of all applications created
within the next five years will be built using low-
code or no-code technologies. “Low-code” and

“no-code” often end up grouped together; however, these
similar-sounding terms are anything but interchangeable.

Low-code technologies were introduced in the early 2000s
as a means to automate repeatable coding tasks. These
tools added some efficiencies for the pre-mobile, proto-
broadband era, but they don’t adequately address the
mounting development challenges of today’s enterprise.

Modern companies are under increasing pressure to “go
digital” to drive operational efficiencies and address users’
evolving expectations for digital service. However, they
must do so within complex ecosystems while competing
for a limited pool of experienced programmers—and as
a result, development efficiencies across industries have
taken a hit.

Consider that between 1980 and 2000, developer
productivity steadily improved thanks to new
programming languages, coding strategies, and
development tools such as low-code. But then, around
2010, the numbers began moving in the opposite
direction. The reason is that traditional development
tools and methodologies have failed to keep up with the
demands of today’s digital ecosystems, which is why a
new approach became necessary.

No-code technologies eliminate the need to write or
manage code, which means organizations can focus all
their resources on addressing business challenges rather
than dealing with syntax, bugs, and legacy code (some of
which may be decades old).

1Consider last year’s strange rush on COBOL-literate programmers to update long-
untouched government systems built on a mostly-forgotten language.

https://ronimmink.medium.com/citizen-development-will-eat-the-world-and-possibly-your-organisation-11b6ce3912a3#:~:text=Almost%2050%25%20of%20app%20development,reach%20%2421.2%20billion%20by%202022
https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess
https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess
https://www.asg.com/en/Resources/Blog/June-2020/Sudden-Demand-for-COBOL-Programmers.aspx

4The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

*

*

*

https://www.unqork.com/resources/articles/unqork-s-enterprise-no-code-platform-reduces-bugs-by-more-than-600x
https://www.unqork.com/resources/articles/forbes-profiles-unqork-founder-gary-hoberman-and-huge-series-c-fundraise
https://www.forbes.com/sites/martingiles/2020/10/06/no-code-startup-unqork-hits-2-billion-valuation/?sh=556eb0e6138c

5The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

The 5 Key Steps

Building with low-code requires trained
programmers to write-out and manage
hundreds of LOCs—often using a

mix of standard programming languages
(e.g., Java, Python, etc.) and a proprietary
language unique to that low-code tool.
No-code application platforms like Unqork
provide a level of abstraction between
developers (or “Creators” as we refer to
them) and the underlying codebase. In
Unqork, software is built by manipulating
configurable visual components
representing user-facing elements, back-

end logic, and third-party integrations via an
intuitive visual UI. As a result, development is
dramatically simplified and even non-IT staff
can take part in the development process.
The process of building a modern enterprise
application can be separated into five key
steps. When using a traditional code/low-
code based approach, each step requires
a great deal of time and resources from
a trained engineer. While with no-code,
organizations can tap into the power of a
unified, visual platform to streamline and
accelerate development.

Capture User
Data via a

Multi-Step Form
Define business

logic of form

Integrate with
third-party
services or

datasources

Query and
process

data from
integrations

Create APIs to
allow systems
to talk to your

application

Low-Code
Platform

Requires Code

Pure No-Code

In order to kick-start a business process,
users supply relevant information about
who they are and what they want to
accomplish. In a previous technological
era, this would happen through in-person
or phone engagements with a live agent
or representative. This was an inherently
expensive approach that wasn’t always
available (i.e., “please try your call again
during regular business hours”) or would
lead to poor data quality as it relies on
human intermediation from the agent.
Fast forward to today and this information
can be collected via a digital form online
from the comfort and familiarity of a
user’s personal device. These forms are
the foundation for any modern enterprise
application, but they can be challenging to
produce with a low-code platform.

Step 1
Capture User Data via a Multi-Step Form

available (i.e., “please try your call again
during regular business hours”) or would

6

/*

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

a!localVariables(

 local!employee:a!map(firstName:null,

lastName:null, department:null, title:null,

phoneNumber:null, startDate:null),

 local!currentStep: 1,

 local!steps: {“Step 1”, “Step 2”,

“Review”},

 a!formLayout(

 label: “Example: Onboarding Wizard”,

 contents:{

 a!sectionLayout(

 contents:{

 a!milestoneField(

 steps: local!steps,

 active: local!currentStep

)

 }

),

 a!sectionLayout(

 contents:{

 a!columnsLayout(

 columns:{

 a!columnLayout(

 contents:{

 a!textField(

 label: “First Name”,

 labelPosition: if(

local!currentStep = 3, “ADJACENT”,”ABOVE”),

 value: local!employee.

firstName,

 saveInto:

local!employee.firstName,

 readOnly:

local!currentStep = 3,

 required:

not(local!currentStep = 3),

 showWhen: or(

local!currentStep = {1,3})

),

 a!textField(

 label: “Last Name”,

 labelPosition: if(

local!currentStep = 3, “ADJACENT”,”ABOVE”),

 value: local!employee.

lastName,

 saveInto:

local!employee.lastName,

 readOnly:

local!currentStep = 3,

 required:

not(local!currentStep = 3),

 showWhen: or(

local!currentStep = {1,3})

),

 a!textField(

 label: “Phone Number”,

 labelPosition: if(

local!currentStep = 3, “ADJACENT”,”ABOVE”),

6

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 readOnly:

local!currentStep = 3,

 required:

not(local!currentStep = 3),

 showWhen: or(

local!currentStep = {1,3})

),

 a!textField(

 label: “Last Name”,

 labelPosition: if(

local!currentStep = 3, “ADJACENT”,”ABOVE”),

 value: local!employee.

lastName,

 saveInto:

local!employee.lastName,

 readOnly:

local!currentStep = 3,

 required:

not(local!currentStep = 3),

 showWhen: or(

local!currentStep = {1,3})

),

 a!textField(

 label: “Phone Number”,

 labelPosition: if(

local!currentStep = 3, “ADJACENT”,”ABOVE”),

6The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

According to a popular low-code
platform’s website, building a simple form
like the one shown here requires a trained
programmer to write 111 LOCs. Note: the
111 LOCs do not include key enterprise
features like field-level validation or a
responsive UI—that functionality would
require even more coding resources.

Onboarding Wizard

First Name* Department*

Last Name* Title*

John

Doe

HR

Manager

Next

7The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

Using Unqork, the same form with advanced functionality detailed above can
be built and deployed in a matter of minutes. Creators simply drag-and-drop
components and visually configure each step in the multi-step navigation form.

10The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

Using Unqork, all if/then logic has been abstracted into a purely
visual configurable decision table where Creators can easily
and quickly define:

Inputs:
This is what drives the action. Any component works
here, including buttons or text fields.

Decision logic:
Here you’ll configure the if/then rules connecting
inputs to outputs.

Outputs:
This is what results from the decision logic. It could
include user-facing messages or other dynamic
changes in the UI.

Step 4
Query & Process Data From Integrations

/*

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Account A = new Account(Name=’xxx’);

insert A;

Account B;

// A simple bind

B = [SELECT Id FROM Account WHERE Id =

:A.Id];

// A bind with arithmetic

B = [SELECT Id FROM Account

 WHERE Name = :(‘x’ + ‘xx’)];

String s = ‘XXX’;

// A bind with expressions

B = [SELECT Id FROM Account

 WHERE Name = :’XXXX’.substring(0,3)];

// A bind with INCLUDES clause

B = [SELECT Id FROM Account WHERE :A.TYPE

INCLUDES (‘Customer – Direct; Customer –

Channel’)];

// A bind with an expression that is itself

a query result

B = [SELECT Id FROM Account

 WHERE Name = :[SELECT Name FROM

Account

 WHERE Id = :A.Id].

Name];

Contact C = new Contact(LastName=’xxx’,

AccountId=A.Id);

insert new Contact[]{C, new

Contact(LastName=’yyy’,

accountId=A.id)};

// Binds in both the parent and aggregate

queries

B = [SELECT Id, (SELECT Id FROM Contacts

 WHERE Id = :C.Id)

 FROM Account

 WHERE Id = :A.Id];

// One contact returned

Contact D = B.Contacts;

// A limit bind

Integer i = 1;

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 WHERE Name = :[SELECT Name FROM

Account

 WHERE Id = :A.Id].

Name];

Contact C = new Contact(LastName=’xxx’,

AccountId=A.Id);

insert new Contact[]{C, new

Contact(LastName=’yyy’,

accountId=A.id)};

// Binds in both the parent and aggregate

queries

B = [SELECT Id, (SELECT Id FROM Contacts

 WHERE Id = :C.Id)

 FROM Account

 WHERE Id = :A.Id];

// One contact returned

Contact D = B.Contacts;

// A limit bind

Integer i = 1;

13The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

Enterprise applications rely on data to function. However, data by itself
doesn’t result in functionality. Data processing does. Data processing is
the collection and manipulation of data to create a desired result.

Using a traditional code/low-code
approach, programmers are required
to precisely define where the data is
being pulled, what function you wish
to perform with that data, and then
where the transformed data should
be sent to.

14The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

Using Unqork, Creators need only configure a pre-made
visual component to define inputs, outputs, and data
transformations. Our visual data workflow empowers
Creators to process data in almost-infinite ways such as:

Ingesting data.

Unwinding complex data structures.

Filtering data to obtain specific items.

Viewing data at different points within the workflow.

Appending data items to create new structures.

Outputting data.

In Unqork API creation is a completely visual experience. All API gateways are
pre-built & pre-exposed, which means any application built in Unqork can run
“headless” at the flip of a switch.

Step 5
Create APIs to Allow Systems to
“Talk” to Your Application

/*

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

import java.io.IOException;

import java.io.OutputStreamWriter;

import java.net.HttpURLConnection;

import java.net.URL;

import java.net.URLEncoder;

import java.util.Scanner;

import org.json.JSONObject;

public class RestApiClient {

 public static void main(String[] args) throws IOException{

 Scanner scanner = new Scanner(System.in);

 System.out.println(“Welcome to the Person Info Command Line Editor.”);

 System.out.println(“(PICLER for short.)”);

 System.out.println(“Do you want to get or set a person’s info?”);

 System.out.println(“(Type ‘get’ or ‘set’ now.)”);

 String getOrSet = scanner.nextLine();

 if(“get”.equalsIgnoreCase(getOrSet)){

 System.out.println(“Whose info do you want to get?”);

 System.out.println(“(Type a person’s name now.)”);

 String name = scanner.nextLine();

 String jsonString = getPersonData(name);

 JSONObject jsonObject = new JSONObject(jsonString);

 int birthYear = jsonObject.getInt(“birthYear”);

 System.out.println(name + “ was born in “ + birthYear + “.”);

 String about = jsonObject.getString(“about”);

 System.out.println(about);

 }

 else if(“set”.equalsIgnoreCase(getOrSet)){

 System.out.println(“Whose info do you want to set?”);

 System.out.println(“(Type a person’s name now.)”);

 String name = scanner.nextLine();

 System.out.println(“When was “ + name + “ born?”);

 System.out.println(“(Type a year now.)”);

 String birthYear = scanner.nextLine();

 System.out.println(“Can you tell me about “ + name + “?”);

 System.out.println(“(Type a sentence now.)”);

 String about = scanner.nextLine();

 setPersonData(name, birthYear, about, password);

 }

 scanner.close();

 System.out.println(“Thanks for using PICLER.”);

 }

 public static String getPersonData(String name) throws IOException{

 HttpURLConnection connection = (HttpURLConnection) new URL(“http://

localhost:8080/people/” + name).openConnection();

 connection.setRequestMethod(“GET”);

 int responseCode = connection.getResponseCode();

 if(responseCode == 200){

 String response = “”;

 Scanner scanner = new Scanner(connection.getInputStream());

 while(scanner.hasNextLine()){

 response += scanner.nextLine();

 response += “\n”;

 }

 scanner.close();

 return response;

 }

 // an error happened

 return null;

20
21
22
23
24
25
26
27
28
29
30
31
32
33

 if(“get”.equalsIgnoreCase(getOrSet)){

 System.out.println(“Whose info do you want to get?”);

 System.out.println(“(Type a person’s name now.)”);

 String name = scanner.nextLine();

 String jsonString = getPersonData(name);

 JSONObject jsonObject = new JSONObject(jsonString);

 int birthYear = jsonObject.getInt(“birthYear”);

 System.out.println(name + “ was born in “ + birthYear + “.”);

 String about = jsonObject.getString(“about”);

 System.out.println(about);

}

15The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

To build a truly valuable application, you’ll want
to make the functionality available to other
systems. “Headless” architecture makes a
solution’s logic and functionality available via
APIs so other systems can become the new
front-end for your functionality.

To achieve this using low-code, users would
need to write code to define the API that
exposes the data you want to send (i.e., build
an API gateway) and write code to define what
part of data you want to send and what format
you need to send it in. This process needs to
be repeated every time there is a new process
in which information is sent to an external
application.

In Unqork API creation is a completely visual experience. All API
gateways are pre-built & pre-exposed, which means any application built
in Unqork can run “headless” at the flip of a switch.

16The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

17The 5 Key Steps to Building a Modern Enterprise Application: No-Code vs. Low-Code

The enterprise leaders of tomorrow will be the firms who can digitize their processes most
thoroughly and adapt their infrastructure most rapidly around shifting business challenges.
With no-code, firms are empowered to build scalable, secure, complex, compliant, custom
applications with unprecedented speed and flexibility.

That’s why many of the most innovative players are partnering with Unqork, the first
enterprise no-code development platform specifically designed for the world’s most complex
and regulated industries. Our platform represents an entirely new paradigm that optimizes
every aspect of enterprise development through:

A unified SaaS platform: Unqork is a completely unified SaaS platform, which
means it provides all the components and capabilities related to crucial areas like
compliance (up-to-date regulatory and enterprise rules engines for FATCA, CRS,
UK CDOT, Dodd-Frank, EMIR, and MiFID II, etc.), security (native encryption both in
transit and rest, custom RBAC capabilities, and crowd-sourced penetration tests),
and application management (SDLC governance, application versioning, and
module management)5.

A visual UI: Applications are built via an intuitive, visual User Interface (UI)
featuring drag-and-drop components representing user-facing elements, backend
processes, data transformations, third-party integrations, and a growing library of
industry-specific templates.

Enterprise-grade standards: While there are several business-area-specific or
consumer-level no-code systems on the market, Unqork is the only no-code platform
designed specifically to build complex, scalable, enterprise-ready applications, which
is why it’s already being used by some of the world’s leading organizations.

5While Unqork is a SaaS platform, our customers operate in single-tenant environments, which means there is never a mixing
of client data between Unqork customers. Unqork is cloud-agnostic, so customers can avoid cloud vendor lock-in and deploy

The World’s First Enterprise
No-Code Application Platform

Unqork allows enterprises to shift all their focus to addressing business challenges
instead of technical ones. The platform takes on the “heavy lifting” and frees organizations
to invest their resources building operational efficiencies and perfecting the client
experience. This streamlined approach helps organizations achieve:

• Accelerated speed-to-market: No-code automates many high-volume development
tasks so new applications can be built and deployed much faster. In many cases,
applications that would take months or years to reach the market can be built in a
matter of weeks, or even days.

• The elimination of legacy code: Code becomes legacy nearly instantly. With no-code,
organizations only need to be concerned with building business logic, even if there is a
technical change, the platform handles all that on the backend.

• Ease of updates and maintenance: Large enterprises can spend up to 75% of total IT
budget maintaining existing systems. One of the reasons is the complexity of making
a change in one area requires changes throughout the process. A no-code platform
automates many of these cascading tasks and therefore reduces the complexity of
making changes.

• Business agility: Whether it is a pandemic or disruptions of a smaller scale, no-code
can provide organizations with a way to address events quickly.

Curious about how no-code can be applied within your organization? Get in touch to
schedule a demonstration from one of our no-code experts.

Enterprise application
development, reimagined

Unqork is a no-code application platform that helps large enterprises build
complex custom software faster, with higher quality, and lower costs than

conventional approaches.

Request a Demo Learn More

https://forms.unqork.com/demo/
https://www.unqork.com/platform
https://go.unqork.com/demo.html
https://www.unqork.com/platform
https://www.unqork.com/platform
https://www.unqork.com/platform
https://www.unqork.com/platform

	Button 10:
	Button 11:

