
How No-Code
Enhances the Software
Development Lifecycle
How no-code accelerates development, increases
collaboration, reduces costs, and shortens the bridge
between business challenge and digital solution.

Contents
Introduction 3

What Is No-Code? 4

Phase 1: Planning 6

Phase 2: Analysis 7

Phase 3: Design 8

Phase 4: Implementation 9

Phase 5: Testing and Integration 10

Phase 6: Maintenance 11

The Accelerated SDLC in Action 12

A Better Way Forward 14

3 How No-Code Enhances the Software Development Lifecycle

The software development life cycle (SDLC)
represents a complex, lengthy, and expensive
series of challenges for the enterprise. It would
be one thing if all the requisite investments
and frustrations guaranteed a robust ROI.
Unfortunately, that’s not the case.
A 2020 report from the Project Management Institute, for example, found that among
organizations with “highly mature” project management practices, 23% of IT projects
failed to meet project goals, 33% of projects failed to remain in budget, 37% failed to be
delivered on time, and 11% were considered complete failures. These numbers are even
more dismal across the board for “low-maturity” organizations, which boast a frightening
21% rate of complete project failure.

Building and maintaining custom enterprise software is hard—and, it’s getting harder:
Following decades of steady improvements thanks to innovative development tools and
methodologies, the past decade has seen a sharp uptick in average development times.
Why? Traditional code-based development methods are simply not up to the task of
keeping up with the complexity and expansiveness of today’s modern enterprise software.

That’s why a whole new approach is needed.

No-code represents a new development paradigm that accelerates every step in the
process, while subsequently improving quality and reducing costs. Enterprise no-code
isn’t a new tool, it’s a complete development platform that comes with all the tools needed
to build and maintain enterprise software—and, as the name implies, it completely removes
the need to write any code, so organizations can focus all their development efforts on
business logic and creating a great user experience.

In this eBook, we will explore how no-code transforms the entire software development
lifecycle, from initial planning to ongoing maintenance.

https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pmi-pulse-2020-final.pdf?v=2a5fedd3-671a-44e1-9582-c31001b37b61&sc_lang_temp=en
https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess

4 How No-Code Enhances the Software Development Lifecycle

No-code is a category of cloud-computing services that empower enterprises to develop,
run, and manage applications on a single unified system. As the name implies, no-code also
eliminates the need to write any code—indeed, it completely removes the presence of an
editable codebase from the development process. That doesn’t mean there’s not any code
anywhere in the system—no-code platforms simply provide an intuitive visual layer between
code and creator. Let’s take a deeper look:

HOW DOES IT WORK?

When you are building an application with code, what you’re doing is reproducing a set of
commands over and over again. The commands happen in different ways in different parts of
your program, but they are the same commands. What a no-code platform does is repackage
these commands in a graphical form, allowing you to configure and manipulate them visually.
The platform then executes those commands as if they were written in code.

By stringing together such commands, you can build your program without having to see any
of the code or write any of it yourself.

The application is configured visually from start to finish, and it runs entirely from the platform
after it’s deployed. Changes are made by simply logging in and reconfiguring the visual interface.

WHY IS IT HELPFUL?

Removing the need to write, edit, and debug lines of code speeds up the time to market,
improves quality, and lowers the costs of initial builds and ongoing software maintenance.

WHO SHOULD USE IT?

Let’s look at this one in a little more detail, and break it down by:

• Company size: No-code platforms can be used by companies of all sizes, but the
companies that will benefit the most are the ones spending an outsized portion of their IT
budgets on complex custom applications. The larger the company, the more it stands to
gain from streamlining its application development process.

• Industry: Companies across all industries are using no-code platforms. Early adopters were
primarily in industries like Financial Services and Insurance. But increasingly, organizations
across all categories that spend a significant portion of their budgets on custom software
projects are adopting the no-code approach.

• Roles: No-code platforms can be used by anyone that understands basic logic and
conditional statements. This means everyone from classically trained engineers to business
analysts, and anyone in between.

What Is No-Code?
Before we jump into the advantages of no-code
in the development process, let’s explore a little
of what no-code is in finer detail.

https://www.unqork.com/solutions/financial-services
https://www.unqork.com/solutions/insurance

5 How No-Code Enhances the Software Development Lifecycle

For decades, the standard in software development
has been based on the idea of building faster.
This isn’t a new challenge. In fact, many years ago,
the problem was even worse, as many of the stopgap
solutions we rely on today didn’t even exist yet! Let’s
take a quick look at how building applications has
evolved over the last several decades:
• The 1980s were a difficult period for software development.

COBOL was the dominant language, but it was really difficult
to use. Many projects failed to get off the ground or, worse,
were released but malfunctioned. That’s why many refer to
this period as “The Software Crisis.”

• Then the 1990s came along and things got a bit better.
COBOL continued to dominate, but methodology innovations
like Rapid Application Development (RAD) and higher-level
(and more user-friendly) programming languages like Java
started to gain traction in the enterprise and building software
got more efficient and easier. Applications became more
useful and the time spent creating them decreased.

• Next came the 2000s, which saw Java surpass COBOL as the
dominant language. Innovations like frameworks (e.g., Spring)
and Integrated Development Environments (IDEs) along with
low-code platforms like Appian, Mendix, and Outsystems all
helped developers become more productive.

• Then the 2010s came along, higher-level languages like
Python started to gain adoption, and low-code platforms and
frameworks became more advanced. Methodologies like Agile
started to permeate enterprise development projects. And
despite these advancements, the average time to complete
a typical software project was 10,500 hours, a 20% loss in
productivity.

So, why this recent downtick in productivity? There’s
no doubt software got more complex in the 2010s,
but it got more complex in previous periods as well.
What’s different is that the most recent increases in
complexity have not—yet—been matched with a new
set of development technologies that are sufficiently
able to address these challenges, and as a result,
budgets are exploding, backlogs are growing, and
projects failing to meet requirements and timelines.

A Brief History of Software
Development Productivity

2010s

2000s

1990s

HOURS REQUIRED FOR TYPICAL
ENTERPRISE APPLICATION

Source: QSM Software Development
Database, 2019

1980s

18,019

13,667

8,919

10,500

https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess
https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess

6 How No-Code Enhances the Software Development Lifecycle

Phase 1: Planning

THE NO-CODE DIFFERENCE

Accidental Misalignments → Purposeful Collaboration

The Planning phase involves studying competitors, aligning on the project’s high-level
specifications, and beginning the process of gathering requirements. This is also the stage
where crucial misalignments on execution and expectations can take shape and make an
impact deep into the process.

Even with a friendly and collaborative working environment, it’s all-too-easy for
miscommunications between the IT and business teams to occur.

Using traditional development methodologies, IT teams are responsible for “translating”
the business team’s vision into code, which leaves the door open to mistranslations.
Enterprises can no longer invest the months—or sometimes even years—into building a
technology project, only to realize that it doesn’t match up with what was needed.

No code-platforms enable business teams to efficiently and collaboratively create
applications that are focused on the needs of the organization from start to finish.

7 How No-Code Enhances the Software Development Lifecycle

In the Analysis stage of the SDLC, teams dive deeper into requirements-gathering and
start anticipating potential technical obstacles that lie between them and the completed
project. The resulting deliverable is usually a software requirement specification
document, or “spec.”

The sheer number of decisions that need to be made just to set the groundwork for an
application is never clearer than in this stage. It’s at this point that teams have to decide
on the servers they’ll use, the languages they’ll code in, and the cloud provider they’ll
work with, etc. These decisions also need to incorporate security concerns, which require
enhancements and proper documentation throughout the build and implementation. There
are always hidden costs in either time or money that come from an ad-hoc Analysis process.

No-code eliminates this initial decision-making step entirely by providing a fully built
environment where the best technologies have already been selected. And while we’re at
it, top-notch security features should already be built in for audits and compliance.

When teams have access to a robust off-the-shelf infrastructure, organizations can refocus
from building an application to building business value.

THE NO-CODE DIFFERENCE

Ad-Hoc Decisioning → Ready-to-Go Infrastructure

Phase 2: Analysis

8 How No-Code Enhances the Software Development Lifecycle

THE NO-CODE DIFFERENCE

Project Overruns → Accelerated Development

All the steps in the Design phase leave room for overruns. These delays make a big
difference for enterprise tech projects—the longer a project is scheduled to last, the more
likely it is that it will run behind schedule and over budget. In fact, every additional year
spent on the project directly increases cost overruns by 15%. On average, large IT projects
run 45% over budget and 7% over time, all while delivering 56% less value than expected.

No-code overcomes these challenges by enabling the formation of smaller teams, with fewer
restrictions on the necessary skill sets of team members. A no-code development process
brings key business leaders closer to the solutions being proposed, allowing enterprises to
design applications that fit their original goals within the intended timeframe.

Between ideation and development, a product must pass through countless approval steps.
Soliciting input on the project’s optimal architecture and design approach can support
organizational buy-in, but this is also the phase where many projects fall off the rails.

By the time it even gets to the project management phase, the application can morph so
much that the needs of the client or end-user are completely lost. In other words, it’s like
an enterprise-wide game of telephone, where the original purpose of the project gets
completely muddled along the way.

But that’s not the only problem.

Phase 3: Design

THE NO-CODE DIFFERENCE

A Game of Telephone → A Clear Mission

https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/BTO/PDF/MOBT_27_Delivering_large-scale_IT_projects_on_time_budget_and_value.ashx#:~:text=We%20also%20found%20that%20the,cost%20overruns%20by%2015%20percent.&text=Large%20IT%20efforts%20often%20cost,the%20whole%20organization%20in%20jeopardy.

9 How No-Code Enhances the Software Development Lifecycle

At last, it’s time to actually build the project. Right?

Not quite. With traditional application development, there’s an incredible amount of back-end
foundational work that needs to be accomplished before you even see the first logo or basic
visual configuration on your screen.

Building applications from the ground using code up has proven time and again to be costly,
labor-intensive, and hard to keep on schedule. Engineers are compelled to spend countless
work-hours churning-out boilerplate code and thinking through syntax when they should be
able to focus on addressing business challenges.

A no-code platform comes with securely configured back-end development, which means
a huge, tedious chunk of the development process has already been completed. This frees
developers to think through the logic of the project they’re building, rather than repeatedly
writing out the same declarations and boilerplates.

THE NO-CODE DIFFERENCE

Approximations → Previews

Because there are so many steps in between the early stages of the SDLC and being able
to view a close-to-finished product, there’s also significant room for error. Developers
often can’t share tangible work until the project is almost complete, meaning there’s not a
lot of time or room for substantive feedback as the process moves along. Giving feedback
at this point is challenging and causes extensive (and expensive) delays.

Since no-code output is live and ready to use as soon as it’s built, development teams can
share their work for iterative feedback at any time.

No-code platforms are a new, powerful tool in a developer’s repertoire, and that’s never
clearer than in the implementation stage of the development process. With no-code,
programmers can focus on more complex tasks, collaborate more effectively, and easily
share progress with their colleagues.

Phase 4: Implementation

THE NO-CODE DIFFERENCE

A Focus on Code & Syntax → A Focus on Business Logic & UX

10 How No-Code Enhances the Software Development Lifecycle

With various team members’ contributions to the software complete, it’s time to bring it
all together and test for errors, hammer out integrations, and complete any other checks
necessary to ensure that the project meets quality standards. This is when teams must be
able to answer questions like:

• Does the deliverable meet the requirements and objectives we agreed to in the
planning and analysis stages?

• Is it reliable?

• Are there any remaining bugs?

As you may know from personal experience, this process can drag on for much longer
than expected because building software with code can be an open invitation to bugs and
integration challenges.

Developers can easily spend hours sitting through technical meetings or scrolling through
Stack Overflow looking for solutions to buggy code. All of these hours eat into time that
could be spent on building new software that delivers value to the business. What’s worse,
once your developers have successfully debugged their way to an error-free project, the
software can still fail to meet the business objectives that kicked off the whole project in
the first place.

To radically improve the testing and integration step of the development process, teams
need a functional back-end that’s already set-up and ready to build on. This kind of platform
would allow developers to dive into the front-end and start doing tangible, visible work from
the get-go. With a good no-code platform, that front-end work is tested as it’s configured, so
any potential errors are caught before they can create severe problems downstream.

THE NO-CODE DIFFERENCE

Endless Debugging → Accelerated Problem Solving

Phase 5: Testing and Integration

11 How No-Code Enhances the Software Development Lifecycle

When the Testing phase is complete and the product is ready for deployment, it is time for its
release into the marketplace. Sometimes this happens in stages or all at once, depending on
the organization’s business strategy (e.g., the product may only be released to current clients).
Based on feedback, changes may be made before complete deployment occurs.

After the product’s release, the team makes software improvements or change requests as
needed. The ultimate goal of the Maintenance phase is to ensure that the product remains
relevant and high quality. It involves ongoing evaluations of the system’s performance.

If you’ve ever developed software, you already know the struggle of maintaining legacy code.
Older systems or previous developers often leave behind code that’s no longer compatible
with your current system, and there’s no quick way to work through it. Before diving into a new
project, your developers have to find out how the existing system works, dissect the old code,
and create new workarounds or rewrite the code entirely. By the time they finish this painfully
time-consuming process, an important deadline has likely passed.

Legacy maintenance can be a huge drain on IT resources. Modifying or fixing an engineer’s
work requires diving deep into code to perform time-consuming reverse engineering. Over
time, this means that enterprises are paying for highly expensive developers to simply maintain
the status quo.

No matter the reason for legacy code headaches, there’s always one common denominator—
code. The moment new code is shipped, it becomes legacy.

With no-code development, not only can you stop producing the legacy code of the future,
while maintaining existing legacy systems. Platforms like Unqork function alongside existing
solutions, allowing developers to easily keep what works and change what doesn’t. This results
in faster builds with lessened maintenance costs, and more time for business and IT teams to
focus on what really matters—solving problems for the business.

THE NO-CODE DIFFERENCE

Legacy Code → Efficient Upgrades

Phase 6: Maintenance

12 How No-Code Enhances the Software Development Lifecycle

THE CHALLENGE

The servicing operations at one of the world’s largest
insurers were overly reliant on manual processes. In order
to make its business more efficient, flexible, and error-
free, the company embarked on a company-wide digital
transformation initiative.

To start, the company sought to digitize its complex (and
extensively paper-based) electronic fund transfers (EFT)
process. The initial build of this digital transformation
project was anticipated to take anywhere between 12 and
18 months using traditional code-based methodologies.
Frustrated with that time frame, the company looked for
an alternative route and decided to tap into the power
of Unqork’s advanced no-code platform to deliver a
comparable solution in a fraction of the time.

THE SOLUTION

Previously, the EFT process was a complex and convoluted
one. Records would be faxed to the company’s mailroom,
where they would then be scanned by one employee who
would then hand the file off to another employee who was
responsible for uploading the file into an electronic system
and cleaning/preparing the data.

Unqork worked with the company to build a fully digital AI-
powered system. Now, when records are faxed in, they are
scanned in and securely fed into a machine vision algorithm,
which translates writing into machine-readable data points
so that business rules can be automatically applied.

THE RESULTS

With traditional code-based development methodologies,
this project would have taken the company the better part
of a year to finish. With Unqork’s configuration-based
development platform, it took only 12 weeks.

With the help of Unqork’s digitization solutions, the
company saw an immediate 60% reduction in required
labor, which meant employees could spend less time
on repetitive tasks, and more time building value for the
company in other areas.

THE NO-CODE DIFFERENCE

Digitizing a Complex
Insurance Process in
12 Months → 12 Weeks

The Accelerated SDLC
in Action

12

https://investinganswers.com/dictionary/e/electronic-funds-transfer-eft

13 How No-Code Enhances the Software Development Lifecycle 13 How No-Code Enhances the Software Development Lifecycle

Business impact realized by Unqork customers

Developed a single application automating end-to-end
loan origination across borrower home loan application,
underwriting, offer, and acceptance processes.

• Speed to Market: 6 weeks to go from ideation
to production, with only 4 resources

• Increased revenue capture potential &
improved broker productivity

Digitization of home loan application process
FINANCIAL INSTITUTION

Developed an end-to-end, digital self-service solution
automating sponsor, plan, servicing, pricing, advisor, and
TPA data capture.

• Speed to Market: 16 weeks to go from
ideation to production, with only 4 resources

• Accelerated client onboarding times from
4 weeks to 3 hours

Digitization of plan sponsor onboarding
A TOP 5 RETIREMENT SOLUTIONS PROVIDERA TOP 5 RETIREMENT SOLUTIONS PROVIDER

Developed an end-to-end digital solution fully automating
intake, quote, bind, issue for no-touch and underwriter
referral workflows.

• Speed to Market: 12 weeks from inception to
production, with only 5 resources.

• Reduced average time-to-quote by 90%
(real-time quoting)

Digital front office and policy administration
GLOBAL P&C CARRIER

Developed an end-to-end digital marketplace concept that
enables brokers and carriers to manage the lifecycle of the
sales prospect.

• Speed to Market: launched marketplace
concept in 8 weeks

• Improved response time to customers by more
than 50% resulting in higher sales potential

Digitized broker and carrier sales operations/marketplace
GLOBAL INSURANCE BROKERAGE

Developed a direct-to-consumer, customer authenticated,
self-service application (mobile native) that digitized entire
interview process and underwriting.

• Speed to Market: Launched app from ideation
to production in 8 weeks

• Reduction in turn-around time, from
45 minutes to less than 10 minutes

Digitized invasive medical questionnaire
A TOP 5 LIFE INSURER

A Better Way Forward
In today’s digitally-driven marketplace, application development is a key differentiator of
successful enterprises. However, the risks, costs, and delays baked into the traditional
application development process have become increasingly unsustainable, especially as the
size and scope of IT projects grow and become more critical to success.

We shouldn’t settle when it comes to the platforms we rely on for application development,
particularly when it costs teams so much money and projects so frequently fail. By rethinking
the whole process and opting for a configuration-based, no-code method, we can simplify
application development, speed up labor processes, and ultimately create an end product that
is better aligned with business goals.

Advanced no-code platforms like Unqork can help your organization achieve adeptly engineer
around challenges of any scale. Get in touch to see what we can do for you.

Enterprise application
development, reimagined

Unqork is a no-code application platform that helps large enterprises build
complex custom software faster, with higher quality, and lower costs than

conventional approaches.

https://forms.unqork.com/demo/?hsCtaTracking=4d7f102c-56d1-4057-95e2-3a2402d1b280%7C4a0ff44c-3dfe-4766-9fd8-2d669e3a89e2
https://forms.unqork.com/demo/?hsCtaTracking=4d7f102c-56d1-4057-95e2-3a2402d1b280%7C4a0ff44c-3dfe-4766-9fd8-2d669e3a89e2
https://www.unqork.com/platform
https://forms.unqork.com/demo/?hsCtaTracking=4d7f102c-56d1-4057-95e2-3a2402d1b280%7C4a0ff44c-3dfe-4766-9fd8-2d669e3a89e2
https://www.unqork.com/platform

	Button 4:
	Button 11:
	Button 12:
	Button 13:
	Button 14:

